
Software Reliability

 Measuring Software Reliability © D L BIRD 2003

Abstract

This paper sets out a technique for measuring software reliability. It introduces a new style of

metric that establishes software 'reliability-confidence', a simple measure that can be applied

to any software system to give both Customer and Supplier an easy to understand means of

qualitatively expressing software reliability. The technique is especially pertinent to the use

of Commercial Off the Shelf (COTS) products whose build quality and configuration

management status cannot be easily ascertained, a growing requirement!

Introduction
1. Software is not traditionally associated with conventional reliability metrics, therefore

choosing an approach that enables meaningful measures of software reliability can be a

useful technique, especially when suppliers will not contract for specific software

reliability levels.

Aim
2. The primary aim of this software metric is to prevent defective software intensive

systems passing into customer service whilst obtaining confidence in the delivered

reliability levels. To achieve this, both customers need assurance from their suppliers

that software meets the system requirement for reliability.

3. An additional aim is to change the way in-which software reliability is presented to the

Customer whilst also enabling the Supplier to balance design margins against a

confidence of achieving acceptable reliability.

Background
4. Experience of conventional software metrics is that they do-not demonstrate or convey

to the Customer an understanding of delivered software reliability levels and the

Customer does not necessarily appreciate or realise that price or time constraints can be

reflected in the software quality levels. When the software enters customer service,

these constraints are likely to be of no concern to software users, who in-turn can

develop often-negative views of system reliability levels which may or may not be

justified.

5. There is a degree of consensus that software is 100% reliable if programme execution

follows the design intent; the opposite is also generally true, in that any failure to

translate or incorporate a requirement is interpreted as an error. It is this latter

interpretation which gives the perception of low reliability rather than a design shortfall

or lack of requirement definition passed to the supplier.

6. Where the operation of software is subject to random variations or failures, confidence

is needed at delivery that reliability has been achieved. Testing every program state and

every input condition is time consuming and not cost effective, so qualitative

approaches that establish confidence in the software provide an acceptable alternative to

traditional demonstration or verification methods.

7. There is also general consensus that reliable software will emerge from the use of

assurance methods. For example, the use of quality 'procedural' methods such as

ISO9001 and TickIT certification and the use of mature development 'processes' which

can be assured through the use of Capability Maturity Models.

8. Finally the use of a metric for reliability provides the overall product assurance. There

is agreement that procedural and process controls will be covered by a Suppliers quality

and software management plans. The metric for reliability performance generally is

either deterministic[1] or probabilistic[2], and the following proposal sets out a method

that moves towards qualitative measures of software reliability - i.e. to have confidence

that deterministic errors have been fixed and that probabilistic errors are within agreed

limits.

Requirement
9. To identify an appropriate reliability statement that can be used at all levels of the

supply chain with an aim of engendering a qualitative understanding of software

reliability. Specifically customer needs are for:

 Software dependability - confidence that during and after the Contract, the

reliability of software has been built-in and not just proven at acceptance.

 Software with an agreed or acceptable reliability for a known distribution of input

and system states.

10. Our principle requirement is to achieve a strong customer focus i.e. 'Software that

performs to meet the Customer requirements'.

Baseline Understanding and Definitions

12. Software errors may exhibit themselves as either deterministic (repeatable) or

probabilistic (random) in nature. A customer should expect the supplier to remove all or

the majority of deterministic errors during Factory Acceptance Test (FAT) or pre-

delivery inspections.

13. Probabilistic errors resulting from uncertain or varying input states, or outputs that are

subject to error, are most likely to arise from:

 Random or ignorant inputs

 Unknown or untested inputs

 Concurrent and uncoordinated processing

14. Software reliability should be addressed at all stages of the product life-cycle. In

general there are three basic aspects; Processes, Procedures and Metrics, covering the

requirement for quality, software development activities, the code itself, test plans and

the final testing. These aspects are covered thus:

a) Quality assurance processes provide evidence that 'the process is correct'

 ISO9001 accredited and certified suppliers (including sub-systems). The

PCO Software Management Plan recommends Sub-System Suppliers who

are TickIT Certified

 Say what your going to do, do it and show you have done it

b) Procedural methodologies are process driven

file:///C:\Users\David\Documents\My%20Webs\DB%20Frames%20Web\software_reliability.htm%23_ftn1
file:///C:\Users\David\Documents\My%20Webs\DB%20Frames%20Web\software_reliability.htm%23_ftn2

 Use of business capability models such as the Capability Maturity Model

(CMM) to provide a reasonably objective assessment of process

application and maturity.

 Software questionnaire to measure potential supplier conformance to

nature processes and to audit the declared processes

c) Metrics that measure the software reliability during the performance of the

Contract and In-service.

15. Software 'Errors' are an omission or coding mistake that results in a 'Fault'

16. Software 'Faults' are defined as a defect in the code that may cause a 'Failure'.

17. Software 'Failures' are defined as some behaviour of the system that does not meet the

Customers requirement. A failure is also considered to be the observable failure of an

available function; it is not only a system crash or freeze.

18. Other definitions comprise 'Any deviation from specified program behaviour is a

failure' or 'any deviation from required, specified or expected behaviour'.

19. Failure-intensity is defined as the number of failures per unit of time. This is a

Customer orientated measurement.

20. Failure-density is defined as the number of failures per software modules or lines-of-

code. This is a traditional developer measurement.

21. Repeated failure reports will be ignored with this metric to prevent skewing of the

results. The assumption and philosophy is that Users will be made aware of all known

software errors at delivery which should help to reduce repeat errors. The process

assumes that the Customer/User will not attempt to skew the results with spurious or

malevolent reports.

22. Software can be measured in terms of 'degrees of excellence' (how well it meets the

customer expectations) or 'degrees of conformance' (how well it meets a requirement

and standard), in this context 'degrees of excellence' is the preferred viewpoint.

23. Software reliability is considered to be ‘the probability that software will perform a

required function under known conditions for a stated time period’. The time period will

be measured in hours of operational use.

Software Reliability Proposal
23. It is proposed that Customers and Suppliers should move from a quantitative to

qualitative approach to defining system reliability using a metric that to specify a

confidence of achieving system reliability. It is based on a functional view of systems to

which the measure is applied, initially at system levels then at major or ‘super-system’

levels.

24. The precursor to metric application is the determination of functional areas that have

the greatest effect on system reliability. This provides a qualitative view of where

development and test resources should be directed to achieve maximum growth of

confidence. An example of the metric is to 'achieve a 90% confidence of achieving 95%

reliability', but note it is not an absolute reliability outcome.

25. The following diagram illustrates that software with known or deterministic errors can

be acceptable providing the distribution of equipment states and inputs is known and

declared to the Customer. The functional elements of the metric, articulates the

delivered reliability-confidence by describing system attributes and then ranking them in

importance. Errors not seen at acceptance are treated as probabilistic errors that may or

may not emerge during a normal mission. However, in both cases we would expect

these errors to be fixed during the warranty period and to be within the next software

up-issue. When probabilistic errors occur, they are likely to change status to

deterministic if they can be repeated.

OK = Error free System operation

NOK = Not OK, system exhibits errors

 When states and inputs are aligned

26. The assumption associated with this metric is that Customers should be aware of known

issues with delivered software. In the example state diagram shown above, the Customer

should be made aware of the conditions that will create a system error. A declaration of

known system problems should increase Customer awareness of system limitations, so

doing so should also alleviate negative criticism and reduce repeat error reports. For this

premise to have credibility, the Customer must be assured that any known errors will be

fixed within a realistic time period.

The 'Software Confidence in Reliability' Metric
27. This software reliability metric has been selected specifically to provide the end User

and Customer with a simple method of determining software reliability whilst

appreciating the confidence of that measure. Here reliability is considered to be ‘the

probability that software will perform a required function under known conditions for a

stated time period’. The time period will be measured in hours of operational running

time.

28. The following metric is based on the quality assurance process known as

‘The Run Time Success Theorem’. This metric has been selected as the required initial

levels of reliability are highly likely to be achieved by a software supplier employing a

sound software quality assurance process, and as the software faults are identified and

repaired, the run time metric can quickly indicate the ‘improved’ reliability.

29. The run time success theorem is normally employed when the shape of the failure

distribution is not known or cannot be assumed. It should be noted that several

statistical models for estimating software reliability have been developed. Whilst many

of these assume faults are distributed at random, this assumption may be invalid because

software failure will only occur as a result of executing a specific path in the code with

specific inputs.

30. The metric will measure failure intensity of a supplied software system. Failure

intensity is the number of failures experienced per-unit time period. A failure is

considered to be the observable failure of an available function. (It is not only a system

crash or freeze and repeat errors are ignored to reduce skewing of the results).

Defined System States

Input

States

OK

OK

OK

OK

OK

OK

OK

NOK

OK

31. For the run time success theorem to apply, it is essential to employ a unit of time that is

meaningful to the user. In this case, 1000 hours has been chosen as it equates quite

closely to a month of continuous usage (45days x 24 hrs = 1080 hours).

32. The metric is based on the following equation:

Where:

Rc = Reliability confidence (0-1)

C = Confidence (0-1)

n = Number of Hours between failures.

(A time-unit is currently 459/200 hours to allow a per-unit baseline referenced to 5

failures per 1000Hrs to be established - see later examples)

Or, rearranged as Hours

33. When the run time formula is employed for single shot events, n equals the number of

single shot successes before failure to give the required confidence. In this case n will

represent the number of Hours before failure. The required confidence for the user

will be 90% or better and the target reliability will be 99.5% at Customer Delivery

(CD) improving to 99.9% one year after CD.

34. The failure intensity expected will therefore be 5 failures maximum per 1000 hours at

CD and 1 failure per 1000 hours one year after CD. Table-1 illustrates the minimum

run time required to indicate a reliability of 90 to 99% with a confidence of 85 to 95%.

This table demonstrates a key feature of the metric in that confidence and reliability

values can be calculated after just a few hours without failure.

35. However it should be noted that after 10 hours the User could assume he has 90%

confidence that the software is 90% reliable, the User is unlikely to be impressed, as this

indicates a potential failure once every 10 hours (i.e. 90% reliable using this metric).

Only when the software reaches 99.5 to 99.9% reliable (at 90% confidence) or better

will the users consider the software to be reliable. This would require the software to

operate for 500 to 2500 hours with just one failure; which does not seem an

unreasonable target.

 Running Time in Hours before failure
 Reliability 0.90 0.99 0.995 0.999

Confidence 0.85 8 82 165 826
Levels 0.90 10 100 200 1002

 0.95 12 130 260 1304

Table 1: Shows minimum run time in hours without failure to achieve a given reliability at a given

confidence.

 200/459/1
1

n
CRc

459

200

log

1log

Rc

C
n

 Running Hours before failure
 Time before

Failure
10 100 500 1000 1500 3000

Confidence 50% 0.9702 0.9970 0.9994 0.9997 0.9998 0.9999
Levels 90% 0.9045 0.9900 0.9980 0.9990 0.9993 0.9997

 99% 0.8182 0.9801 0.9960 0.9980 0.9987 0.9993

Table 2: Shows the reliability assumed, for confidences of 50, 90 and 99% after operating for a range

of 10 to 3000 hours with 1 failure being recorded between each time period.

Expected Reliability Growth and Targets at CD and Beyond
35. Customers should expect reliability growth to be demonstrated throughout the test and

acceptance phase of the product life-cycle. Leading to CD.

36. The customer should expect to see 5-failures per 1000 hours or 90% confidence of

achieving 99.5% reliability and at CD + 1year he should expect to see 1-failure per 1000

hours or 90% confidence of 99.9% reliability.

37. At this stage the customer should not expect to add confidence bounds to the metrics or

to embrace hard and stretch targets.

Illustrative Trials and CD Examples

38. The customer has set a requirement for 90% confidence that software will achieve

99.5% confidence at CD.

39. During test and acceptance trials the supplier recorded a failure after 8 hours operation.

The metric gives the following indicator:

 This yields a Reliability-confidence (Rc) of 88.2% relative to the expected 90%

confidence of 99.5% reliability and a time unit of 459/200 hours. The result is

outside the requirement although expected at this stage of the test and integration

activity.

40. At follow-on test and acceptance trials, the system operated for a total of 40 hours

before the first failure occurred. The metric gives the following indicator:

 This yields a Reliability-confidence (Rc) of 97.5%, which is just outside the

requirement although perhaps still to be expected at this stage of the test and

integration activity.

41. Leading up to CD the system was operated for a total of 1000 hours before the first

failure. The metric gives the following indicator:

 This yields a Reliability-confidence (Rc) of 99.8%, which is inside the

requirement and the system meets the CD requirement.

 200/4598/1
9.01

Rc

)200/45940/(1
9.01

Rc

 200/4591000/1
9.01

Rc

42. At CD + 1year the system has been operated for a total of 3000 hours before a failure.

The result for this trial using the Reliability-confidence was:

 This yields a Reliability-confidence (Rc) of 99.9%, which is inside the

requirement and the system continues to provide User confidence and reliability

growth.

42. In these examples the growth in reliability-confidence has continued from test and

acceptance through to CD and beyond, which should be the customers expectation. The

distribution of failures and reliability growth is not likely to be as depicted in these

examples, since software changes made through life are expected to change the spread

of errors, however reliability growth should continue as runtime increases. Graphically,

reliability growth is expected to resemble:

Supply Chain Reliability Measurements
43. As outlined, the customer objective in using this metric should be to measure software

reliability from a User viewpoint and ideally the metric would be applied to the

supply-chain to form a back-to-back and consistent measurement of software reliability

expectations.

44. This proposal is based on black-box testing and takes no account of system complexity.

In the latter case complex systems should be tested many times through and conversely

low complexity systems tested fewer times to take into account what is expected to be a

typical Customer viewpoint.

Illustrative Process Improvements Methods
45. To achieve reliability growth and product confidence levels customers should expect

the Suppliers design and development effort is directed towards meeting a customer

orientated failure-intensity (failures per hour) rather than the 'traditional' developer

orientated fault-density (faults per modules or lines-of-code) measurement.

46. The method concentrates quality or design improvement effort on a Customer view of

the expected operational profiles, and ranks these with respect to the important and

frequently used functional system elements.

47. The customers expected usage profile is an important consideration during system

development and test, since system usage will determine the Customers expected

reliability levels.

 200/4593000/1
9.01

Rc

Reliability-

confidence

T&A

Trials

CD

CD+1yr

Conclusion
48. The reliability-confidence method offers an opportunity to use simple formulae to

produce a metric that provides a broad range of customer skills, knowledge and

experience to gain confidence in the delivered software products through the metric.

49. Using the metric also allows the supply-chain to manage design-margins and deliver

only that reliability-confidence needed to meet the requirement. In addition, a

qualitative rather than quantitative target for reliability in the supply chain is easier to

deliver rather than meet hard contractual commitments.

50. The technique also enables some reduction in system and regression tests, factory

facility usage during test and acceptance trials and can reduce the duration of traditional

reliability demonstration phases of a project.

51. Delivery of software without verification infers a heavier reliance on modelling or

probabilistic acceptance methods, however the approach proposed provides a coherent

method of determining the confidence of software reliability and customer in-service

quality levels thereby negating that need.

52. The use of reliability-confidence embraces the concept of ‘smart’ principles by

allowing the supplier freedom to balance resources and design margins whilst delivering

systems that meet customer expectations.

[1] Deterministic errors have outcomes determined by system inputs.

[2] Probabilistic errors can produce several outcomes, with associated probabilities for a fixed

input.

file:///C:\Users\David\Documents\My%20Webs\DB%20Frames%20Web\software_reliability.htm%23_ftnref1
file:///C:\Users\David\Documents\My%20Webs\DB%20Frames%20Web\software_reliability.htm%23_ftnref2

